Microsoft word - gw sc bibliography short version final

Questioning the Global Warming Science:
An Annotated bibliography of recent peer-reviewed papers
(Short Version)
Prepared By
Madhav L Khandekar
Environmental Consultant
FRIENDS OF SCIENCE
Calgary, Alberta
January 2007
Scope & Purpose of the Document
This Document presents an annotated bibliography of selected peer-reviewed papers whichquestion the current state of the Global Warming science. Seven major areas of the GlobalWarming science are identified and followed by a list of key papers questioning the presentassessment.
1. Temperature reconstruction using proxy data: The Hockey-Stick Graph
The following studies demonstrate conclusively that the highly publicized Hockey-
stick graph was based on several erroneous calculations and assumptions.

a. “Corrections to Mann et al (1998) proxy data base and northern hemisphere average temperature
series” S McIntyre & R McKitrick Energy & Environment Vol. 14 (2003) p. 751-777 b. “Reconstructing past climate from noisy data” H von Storch et al Science Vol. 306 (2004) p. 679-
c. “Hockey sticks, principal components and spurious significance” S McIntyre & R McKitrick
Geophysical Research Letters, Vol. 32 (2005) L03710 d. “Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution
proxy data” A Moberg et al Nature Vol. 433 (2005) p. 613-617 e. Wegman Edward, Scott D W and Said Yasmin H 2006: Ad Hoc Committee Report to Chairman of
the House Committee on Energy & Commerce and to the Chairman of the House sub-committee onOversight & Investigations on the Hockey-stick global climate reconstructions. US House ofRepresentatives, Washington USA. Available for download fromITTP://energycommerce.house.gov/108/home/07142006 Wegman Report.pdf “Reconstruction of temperature in the central Alps during the past 2000 yr from a delta18Ostalagmite record” A Mangini, C Spotl & P Verdes Earth & Planetary Science Letters, 235 (2005)p.
741-751
2. Impact of solar variability on the earth’s climate
a. “Solar variability and the earth’s climate: introduction and overview” George Reid Space Science
Provides a general overview of the sun’s impact on the earth’s climate through the Little
Ice Age as well as through geological times and the complexity in establishing the
solar/climate link.

b.
“Low cloud properties influenced by cosmic rays” N D Marsh & H Svensmark Physical Review Documents how galactic cosmic rays can influence the earth’s low cloud cover and how
this in turn would impact the mean temperature.

“Global temperature forced by solar irradiation and greenhouse gases?” Wibjorn Karlen Ambio, Argues that the present interglacial has been cooler by about 2°C than the previous ones
during the last 400,000 thousand years when the atmospheric concentration of CO2 was
100 ppmv less than at present.

d. “The sun’s role in climate variations” D Rind Science Vol. 296 (2002) p. 673-677
Provides a general overview of the sun’s impact on the earth’s climate through the Little
Ice Age, as well as through geological times, and the complexity in establishing the
solar/climate link.

e. “Solar influence on the spatial structure of the NAO during the winter 1900-1999” Kunihiko Kodera
Geophysical Research Letters, Vol. 30 (2003) 1175 doi:10.1029/2002GL016584 North Atlantic oscillation is shown to be strongly modulated by high & low solar activity as
identified through sunspot cycles.

“Can slow variations in solar luminosity provide missing link between the sun and the climate?”Peter Fokul EOS, Vol. 84, No. 22 (2003)p.205&208 Presents additional evidence of recent changes in solar irradiance and make a case for
solar impact on the earth’s climate.

g. “Celestial driver of phanerozoic climate?” N Shaviv & J Veizer Geological Society of America 13
Documents, using a “sea-shell thermometer”, how the earth’s temperature over last 500
million years is decoupled with atmospheric CO2 levels, while showing strong correlation
with variations in the cosmic ray flux.

h. “Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface
air temperature record for the past 130 years” Willie W-H Soon Geophysical Research Letters Vol.
32 (2005) L16712
Demonstrates a strong link between total solar irradiance and Arctic-wide surface
temperature over a long period from 1875-2000.

“Solar forcing of the polar atmosphere” P A Mayewski et al Annals of Glaciology Vol. 41 (2005) p.
147-154
Analyzes high-resolution calibrated proxies for atmospheric circulation from several
Antarctic ice cores, which reveal decadal-scale association with solar variability over the
last 600 years.

“The influence of the 11-yr solar cycle on the interannual-centennial climate variability” HengyiWeng J of Atmosphere and solar-terrestrial physics Vol. 67 (2005) p. 793-805 Re-confirms the solar variability impact on earth’s climate by analyzing monthly sunspot
numbers in conjunction with global and regional sea surface temperatures.

k. “Living with a variable sun” Judith Lean Physics Today (2005) Vol 58, No. 6 p. 32-37 American Inst.
Presents additional evidence of recent changes in solar irradiance and makes a case for
solar impact on the earth’s climate.

“Phenomenological solar contribution to the 1900-2000 global surface warming” N Scafetta & B JWest Geophysical Research Letters Vol. 33 (2006) L05708 Constructs a phenomenological model to include solar forcing and demonstrates its
linkage to the earth’s temperature change over last 400 years.

m. “Phenomenological solar signature in 400 years of reconstructed northern hemisphere temperature
record” N Scafetta & B J West Geophysical Research Letters Vol. 33 (2006) L17718 Constructs a phenomenological model to include solar forcing and demonstrates its
linkage to the earth’s temperature change over last 400 years.

n. “Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds” R G Harrison & D B
Stephenson Proceedings of the Royal Society A (UK): 10.1098/rspa.2005.1628 (2006) Documents how galactic cosmic rays can influence the earth’s low cloud cover and how
this in turn would impact the mean temperature.

3. Sea-level rise, ocean surface warming/cooling etc.
Sea-level Rise
“New perspectives for the future of the Maldives” N-A Morner M Tooley & G Possnert Global and Planetary Change 40 (2004) p. 177-182 In the region of Maldives a general fall in sea-level rise occurred some 30 years ago.
b. “Estimates of the regional distribution of sea-level rise over the 1950-2000 period” J A Church et al
J of Climate 17 (2004) p. 2609-2625 Analyzes patterns of regional sea level rise over the period 1950-2000 and concludes that
it is not possible to detect a significant sea level rise over this period anywhere.

c. “Low sea-level rise projections from mountain glaciers and icecaps under global warming” Sarah
Raper & Roger Braithwaite Nature V. 439 (2006) p. 311-313 Projects sea level rise from mountain glacier and icecaps (outside of Greenland &
Antarctic Ice Sheets) as only about 5.1 cm by 2100, half of previous projections.

d. “Nonlinear trends and multiyear cycles in sea-level records” S Jevrejeva et al J of Geophysical
Obtains global sea level rise trend of 2.4 mm per year for the period 1993-2000
“On the decadal rates of sea level changes during the twentieth century” S J Holgate GeophysicalResearch Letters 34 (2007) doi:10.1029/2006GL028492 Analyses nine long and continuous records of sea level changes from 1904 through 2003.
Sea level change of ~2.03 +/-.35 mm/yr from 1904-1953. 1954-2003, sea-level change is
found to be lower ~1.45 +/-.34 mm/yr.

Ocean Surface Warming/Cooling
a. “The sustained North American warming of 1997 and 1998” A Kumar et al J of Climate 14
Shows how the sustained North American land warming was primarily due to the intense
El Nino event of 1997/98, which produced and maintained high sea surface temperature
values over the Pacific basin, as well as other ocean basins through the middle of 1998.

b. “Recent cooling of the upper ocean” J Lyman J Willis & G Johnson Geophysical Research Letters
Documented cooling of the upper oceans and in particular of the southern north Atlantic.
c. “Anomaly of heat content in the northern Atlantic in the last 7 years: Is the ocean warming or
cooling?” V Ivchenko N Wells & D Aleynik Geophysical Research Letters 33 (2006) L22606 Data from the Argo profiling buoys are analyzed for the North Atlantic, and found that the
southern north Atlantic has cooled in the last seven years.

d. “How much is the ocean really warming?” V Gouretski & K P Koltermann Geophysical Research
Studies global hydrographic data, as provided by bathythermographs, and found a
warming bias when the bathythermographs data are compared against bottle and current
temperature density data.

4. Arctic & Antarctic temperatures: from Holocene to present
a. “First survey of Antarctic sub-ice shelf sediment reveals mid-Holocene ice shelf retreat” C J Pudsey
& J Evans Geology 29 (2001) p.787-790 Documents that the Larsen A & B ice shelves in the northeastern Antarctic Peninsula were
probably altogether absent about two thousand years ago.

b. “Antarctic climate cooling and terrestrial ecosystem response” P Doran et al Nature online 13
January 2002 (DOI:10.1038/nature 710) Documents a cooling trend in the Antarctica using recent temperature data.
c. “Variability and trends of air temperature and pressure in the maritime Arctic, 1875-2000” I V
Polyakov et al J ournal of Climate 16 (2003) p. 2067-2077 Presents a long series of temperature and pressure data (1875-2000) over the Arctic basin,
and documents strong multi-decadal variability on a time scale of 50-80 years.

d. “Holocene climate variability” P A Mayewski et al Quaternary Research 62 (2004) p. 243-255
Identifies Rapid Climate Change throughout the Holocene, involving cool polar regions
and wet (or dry) tropical regions.

e. Global warming & the Greenland ice sheets” P Chylek, J E Box & G Lesins Climatic Change (2004)
Shows that a rapid warming over all of coastal Greenland occurred in the 1920s. Average
annual temperature rose between 2° and 4°C in less than ten years.

“A multi-proxy lacustrine record of Holocene climate change on northeast Baffin Island, ArcticCanada” Quaternary Research (2006) 65 p. 431-442 Shows a pronounced Holocene temperature maximum, about 5°C warmer than present.
g. “Greenland warming of 1920-1930 and 1990-2005” P. Chylek, M K Dubey & G Lesins Geophysical
Shows that a rapid warming over all of coastal Greenland occurred in the 1920s. Average
annual temperature rose between 2° and 4°C in less than ten years.

“Extending Greenland temperature records into the late eighteenth century” B M Winter et al J of Geophysical Research 111 (2006) D11105 Extends Greenland temperature records back to the year 1784. The 1930s and the 1940s
were the warmest decades, with 1941 as the warmest year.

“Ice shelf history from petrographic and foraminiferal evidence, Northeast Antarctic Peninsula” C JPudsey et al Quaternary Science Reviews 25 (2006) p. 2357-2379 Documents that the Larsen A & B ice shelves in the northeastern Antarctic Peninsula were
probably altogether absent about two thousand years ago. Further concludes that the CO2
concentration was about 100 ppm lower than at present.

5. Impact of large-scale circulation patterns
a. “A study of NAO variability and its possible non-linear influences on European surface
temperatures” D Pozo-Vazquez et al Climate Dynamics, Vol. 17 (2001) p. 701-715 Shows that a positive value of the north Atlantic oscillation index can produce winter
season warming in Europe.

“Impacts of low frequency variability modes on Canadian winter temperature” B Bonsal, A Shabbar & K Higuchi Int’l journal of Climatology, Vol. 21 (2001) p. 95-108 Shows how an El Nino event, together with positive values of the Pacific decadal
oscillation index, can provide strong positive winter temperature anomalies over most of
Canada.

c. “Are stronger North-Atlantic southwesterlies the forcing to the late-winter warming in Europe?” J
Ottermann et al Int’l J of Climatology, Vol. 22 (2002) p. 743-750 Suggests that stronger south-westerlies in the North Atlantic may be producing early
spring-like conditions in parts of Europe.

d. “Variability of extreme temperature events in south-central Europe during the twentieth century and
its relationship with large-scale circulation” P Domonkos et al Int’l J of Climatology, Vol. 23 (2003) p.
987-1010
Shows that a positive value of the north Atlantic oscillation index can produce winter
season warming in Europe.

e. “January Northern Hemisphere circumpolar vortex variability and its relationship with hemispheric
temperature and regional teleconnection” R Rohli, K Wrona & M McHugh Int’l J of Climatology, Vol.
25 (2005) p. 1421-1436
Discusses the circumpolar vortex and its linkage to both the Atlantic oscillation variability,
and the Pacific North American pattern.

6. Extraneous influence on mean temperature trends: urbanization, land-
use change etc.

a. “The influence of land-use change and landscape dynamics on the climate system: relevance to
climate-change policy beyond the radiative effect of greenhouse gases” R A Pielke sr et al Phil.
Trans. R soc. London UK (2002)360 p.1705-1719
Considered a landmark paper in the present global warming debate. This paper brings out
an important aspect of land-use change and its dominating impact.

b. “Impact of urbanization and land-use change on climate” E. Kalnay & M Cai, Nature, Vol. 423, 29
Using the National Centre for Atmospheric Research, USA, re-analyses upper-air data and
an extrapolation to the surface, obtaining the urbanization impact on mean temperature
trend to be about 0.280C over 100 years and about 0.18 0C over the recent 30 years.

c. “The urban heat island in winter at Barrow, Alaska” K Hinkel et al International J of Climatology, Vol.
Obtains the urban-rural temperature difference of over 20C during the winter months at
Barrow, Alaska.

d. “Impacts of anthropogenic heat on regional climate patterns” A Block, K Keuler & E Schaller
Geophysical Research Letters, Vol 31, L12211, 2004 Shows how anthropogenic heat released from highly industrialized and populated areas
can produce a permanent warming from 0.15° to 0.5°C.

“A test of correction for extraneous signals in gridded surface temperature data” R McKitrick & P Michaels, Climate Research, Vol. 26, 2004, p. 159-173 Documents a definite warm bias in the temperature trend, as a result of non-climatic
impact of local (and regional) economic activity.

“Evidence for a significant urbanization effect on climate in China” L Zhou et al Proc. NationalAcademy of Science(USA) V. 101 (2004) p.9540-9544 Obtains urbanization impact over China to be more than the estimated 0.27°C in the USA
during the 20th century.

g. “Evidence for influence of anthropogenic surface processes on lower tropospheric and surface
temperature trends” A T J De Laat & A N Maurellis, International J of Climatology, 26, 2006, p. 897-913 Studies the influence of anthropogenic surface processes on mean temperature trends,
estimated using green house gas emission world-wide database as proxy for industrial
activity. The mean temperature trends at highly industrial regions and locations were
found to be higher than elsewhere.

h. “Urban heat island effect analysis for San Juan, Puerto Rico” A Velazquez-Lozada, J E Gonzalez &
A Winter, Atmospheric Environment, 40, 2006, p. 1731-1741 Documents a strong urban heat island effect at San Juan, Puerto Rico. It is estimated that
the urban-rural temperature difference could increase to about 8°C by the year 2050.

7. Uncertainties in climate model simulations of regional & global features
a. “Potential role of solar variability as an agent for climate change” C Bertrand & J Van Ypersele
Climatic Change V 43 (1999) p.387-411 It is shown that, although total solar irradiance reconstruction is insufficient to reproduce
observed warming of the 20th century, the model response suggests that the Gleissberg
cycle (~88 yr) solar forcing should not be neglected in explaining the century-scale time
variations.

b. “Simulated impacts of historical land-cover changes on global climate in northern winter” T N Chase
et al Climate Dynamics V 16 (2000) p. 93-10 The simulations suggest that anthropogenic land cover changes can produce tele-
connection patterns affecting global temperature and precipitation distributions.

c. “Monsoon prediction-why yet another failure?” S Gadgil M Rajeevan & R Nanjundiah Current
Science(India) V 88 (2005) P.1389-1400 Examines prediction of the Indian monsoon for 2004 and conclude that the skill in
forecasting the Indian summer monsoon variability has not improved in the last fifty years

d. “Detection and attribution of twentieth-century northern & southern African rainfall change” M
Hoerling et al J of Climate V 19 (2006) p. 3989-4008 Finds that the Sahel region drought of 1950-2000, was not influenced by the green house
gas forcing, indicating that the Sahel drought conditions were likely of natural origin.

e. “ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: realistic
representation?” R Joseph & S Nigam J of Climate V 19 (2006) p.4360-4377 Concludes that climate models are still unable to simulate many features of El Nino
southern oscillation variability, its circulation and hydro-climatic tele-connections. Further
the climate system models are not quite ready for making projections of regional-to-
continental scale hydro-climatic variability and change.

“Precipitation characteristics in eighteen coupled climate models” Aiguo Dai J of Climate V 19(2006) p.4605 Concludes that considerable improvements in precipitation simulations are still desirable
for the latest generation of the world’s coupled climate models.

g. “Is the thermohaline circulation changing?” M Latif et al J of Climate V 19 (2006) p.4631-4637
Examines the thermohaline circulation in the North Atlantic, which is responsible for large
amounts of heat and freshwater transport by the Gulf Stream. Suggests the changes in the
thermohaline circulation during the 20th century are likely to be the result of natural multi-
decadal climate variability.

8. Miscellaneous Studies
a. “Reconciling observations of global temperature change” Richard Lindzen & Constantine Giannitsis
Geophysical Research Letters V 29 (2002) No 12 10.1029/2001GL014074 Analyzes the discrepancy between global mean temperature trends, obtained by satellite
microwave data, and surface temperature measurements.

b. “Compilation and discussion of trends in severe storms in the United States: Popular perception vs
climate reality” Robert Balling Jr & Randall Cerveny Natural Hazards V 29 (2003) p. 103-112 Documents the mismatch between popular perceptions, as created by media reports, and
climate reality, which does not show extreme weather as increasing in the USA.

c.
“On destructive Canadian Prairie windstorms and severe winters: A climatological assessment in the context of global warming” Keith Hage Natural Hazards V 29 (2003) p. 207-228 Documents a temporal frequency peak in severe windstorms and associated tornadoes
during the 1920s and 1930s, then a steady decline since 1940 throu gh 1980s. A steep rise
in tornado frequency since 1970 is attributed to increasing awareness and reporting of
tornado activity in recent years, and NOT due to change in tornado climatology.

d. “Shifting economic impacts from weather extremes in the Unites States: a result of societal
changes, not global warming” Stanley Changnon Natural Hazards V 29 (2003) p. 273-290 Documents that increasing economic impacts of extreme weather events in the USA is a
result of societal change and NOT global warming.

e. “The global warming debate: A review of the present state of science” M L Khandekar T S Murty &
P Chittibabu Pure & Applied Geophysics V 162 (2005) p. 1557-1586 Concludes that the recent warming of the earth’s surface is primarily due to urbanization,
land-use change, etc. and not due to increasing green house gas in the atmosphere.

f.
“Extreme weather trends vs dangerous climate change: A need for a critical reassessment” M LKhandekar Energy & Environment V 16 (2005) p.327-331 Shows that extreme weather events like heat waves, winter blizzards, rainstorms, droughts
etc are not increasing anywhere in Canada, USA or elsewhere, where sufficient data are
available for adequate analysis.

g. “The interaction of climate change and the carbon dioxide cycle” A Rorsch R S Courtney & D
Thoenes Energy & Environment V 16 (2005) p. 217-238 Argues the relatively large rise of CO2 in the 20th century, was caused by the increase in
the mean temperature which preceded it.

h. “Can we detect trends in extreme tropical cyclones?” Christopher Landsea et al Science V 313
Suggests the Dvorak technique, developed to estimate hurricane strength, was not
available in the late 1960s and early 1970s or before, when some of the hurricanes and
tropical cyclones may have been stronger than estimated.

i.
“Trends in western North Pacific tropical cyclone intensity” M- C Wu K-H Yeung & W-L Chang EOSTransactions AGU V 87 (2006) No 48 28 November 2006 Suggests that the western North Pacific tropical cyclone climatology does not reveal
increasing strength for typhoon records from 1965 to 2004.

j.
“On global forces of nature driving the earth’s climate: Are humans involved?” L F Khilyuk & G VChilinger Environmental Geology V 50 (2006) p. 899-910 Presents a comprehensive review of the global forces driving the earth’s climate over
geological times. The present warming of the last 150 years is a short warming episode in
the earth’s geologic history. Human activity (anthropogenic green house gas emission)
may be responsible for only 0.01°C of the approximately 0.56°C warming of the 20th
century.

Summary & Conclusions
1. The recent warming of the earth’s surface (~0.4°C ) is significantly influenced by human
activity on ground like urbanization, land-use change etc. The warming due solely to human-
added CO2 appears to be a smaller part of the total recent warming.

2. Solar variability and changes in large-scale atmospheric flow patterns in recent years have
also contributed to some of the recent warming of the earth’s surface.
3. The Arctic basin temperature changes of the last 125 years, appear to be intimately linked to
the Total Soar Irradiance (TSI) while showing a weak correlation with atmospheric CO2
concentrations.

4. The earth’s climate experienced Rapid Climate Change during the entire Holocene period.
and in particular during the last 5000 years or so. Ice core and other proxy data document
mid-Holocene warming of the Arctic as well as the Antarctic. This Holocene warming
appears to be strongly linked to solar variability and not to the greenhouse gas forcing.

5. There does not appear any discernible link between Global Warming and recent increase in
extreme weather events world-wide. The apparent increase in extreme weather events is
more a perception than reality, this perception being created due to increased media
attention and publicity of extreme weather events.

6.
North Atlantic hurricanes appear to have strengthened in recent years; however typhoons
and tropical cyclones in other ocean basins do not show consistent increase in strength in
recent years.

7. The Sea Level Rise of the 20th century is influenced significantly by inter-decadal variability.
The most recent study (published January 2007) shows that the sea-level change in the last
fifty years were smaller than those in the early part of the 20th century. There is no evidence
of accelerated sea-level change in recent years.

8. Present state-of-the-art coupled climate models still cannot simulate many important
features of major climate events like El Nino South oscillation and tropical and/or Asian
Monsoon at this time. The climate models do not simulate many features of convective or
large-scale precipitation characteristics.

9.
The Thermohaline Circulation in the North Atlantic has exhibited considerable variability in
the 20th century; however this variability appears to be part of natural multi-decadal climate
variability and does not appear to be linked to Global Warming.

10. Future projections of earth’s climate using present climate models do not have sufficient
reliability for climate policy decisions.

Source: http://www.pensee-unique.fr/khandekar1.pdf

Use of polyphosphate accumulating organisms (pao) for treatment of phosphate sludge

Sengupta, M. and Dalwani, R. (Editors). 2008 Proceedings of Taal2007: The 12th World Lake Conference: 918-922 Use of Polyphosphate Accumulating Organisms (Pao) For Treatment Of Phosphate Sludge Shyam S. Bajekal and Neelam S. Dharmadhikari Department of Microbiology, Yashwantrao Chavan College of Science, Karad, Vidyanagar, KARAD – 415 124. (Maharashtra, India) E-mail: ABST

Prmt22163-13.anpwooc.120813

The following is a list of the most commonly prescribed drugs. It represents an abbreviatedversion of the drug list (formulary) that is at the core of your prescription-drug benefit plan. The list is not all-inclusive and does not guarantee coverage. In addition to using this list,you are encouraged to ask your doctor to prescribe generic drugs whenever appropriate. PLEASE NOTE: The symbol * nex

© 2010-2018 PDF pharmacy articles